
 
 

 

 
 

13 March 2025  Page 1 

 

Project Number 101120990 

 

 

SOPRANO Open Call  

Annex 1.2: Technical Description 

 
 

 

 

 



SOPRANO Open Call – Technical Description  

Page 2  13 March 2025 

PROJECT PARTNERS 

AEGIS 

Humboldtstrasse 25 

38106 Braunschweig, Germany  

ATB 

Wiener Strasse 1 

28359 Bremen, Germany 

CEA 

NanoInnov Bat. 862 PC 174 

91191 Gif-sur-Yvette Cedex, France 

Centro Ricerche Fiat 

Strada Torino 50 

10043 ORBASSANO, Italy 

Circular Economy Foundation 

Rue Breydel 34-36-40 

1040 Brussels, Belgium 

E-TERRY 

Neuwerkstrasse 50 

99084 Erfurt, Germany 

F6S 

77 Lower Camden Street 

Dublin D02 XE80, Ireland 

FORTH 

N Plastira Str 100 

70013 Heraklion, Greece 

Harokopio University of Athens 

Eleftheriou Venizelou 70 

176 71 Athens, Greece 

IFADO 

Ardeystrasse 67 

44139 Dortmund, Germany 

Jade University 

Friedrich Paffrath Strasse 101 

26389 Wilhelmshaven, Germany 

KUKA Assembly & Test 

Uhthoffstrasse 1 

28757 Bremen, Germany 

Netcompany-Intrasoft 

2B Rue Nicolas Bové  

1253 Luxembourg, Luxembourg 

NTUA 

Heroon Polytechniou 9, Zographou Campus 

157 80 Athens, Greece 

PROFACTOR 

Im Stadtgut D1  

4407 Steyr-Gleink, Austria 

Technology Transfer Systems 

Via Francesco d'Ovidio, 3 

20131 Milan, Italy 

The Open Group 

Rond Point Schuman 6, 7th Floor 

1040 Brussels, Belgium 

University of Bremen 

Bibliothekstrasse 1 

28359 Bremen, Germany  

University of York 

Deramore Lane 

York YO10 5GH, United Kingdom  

 



 SOPRANO Open Call – Technical Description 

13 March 2025  Page 1 

 

DOCUMENT CONTROL 

 Version Status Date 

1.0 First version  12 March 2025 

2.0 Final version for publication 13 March 2025 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



SOPRANO Open Call – Technical Description  

Page 2  13 March 2025 

TABLE OF CONTENTS 

 
1. Introduction ................................................................................................................................................................ 4 
2. SOPRANO Components Available for Third-Party Deployment and Integration into Industrial Demonstrators ..... 4 
2.1. Visual Spatial Localization and Mapping (VLM) .................................................................................................... 4 

2.1.1. Technical summary ........................................................................................................................................... 4 
2.1.2. Planned date of release of a prototype .............................................................................................................. 5 
2.1.3. Requirements for the component ...................................................................................................................... 5 

2.2. Object Perception (OBP) ......................................................................................................................................... 6 
2.2.1. Technical summary ........................................................................................................................................... 6 
2.2.2. Planned date of release of a prototype .............................................................................................................. 6 
2.2.3. Requirements for the component ...................................................................................................................... 6 
2.2.4. Suggested bundling of this component with other SOPRANO components .................................................... 7 

2.3. Non-Visual Localization (NVL) ............................................................................................................................... 7 
2.3.1. Technical summary ........................................................................................................................................... 7 
2.3.2. Planned date of release of a prototype .............................................................................................................. 8 
2.3.3. Requirements for the component ...................................................................................................................... 8 

2.4. Human Monitoring (HMO) ...................................................................................................................................... 9 
2.4.1. Technical summary ........................................................................................................................................... 9 
2.4.2. Planned date of release of a prototype ............................................................................................................ 10 
2.4.3. Requirements for the component .................................................................................................................... 10 
2.4.4. Suggested bundling of this component with other SOPRANO components .................................................. 11 

2.5. Mapping of High-level Plan to Robotic Capabilities (MRC) ................................................................................. 11 
2.5.1. Technical summary ......................................................................................................................................... 11 
2.5.2. Planned date of release of a prototype ............................................................................................................ 12 
2.5.3. Requirements for the component .................................................................................................................... 12 
2.5.4. Suggested bundling of this component with other SOPRANO components .................................................. 12 

2.6. MH-MR Task Allocation (CTA) ............................................................................................................................. 13 
2.6.1. Technical summary ......................................................................................................................................... 13 
2.6.2. Planned date of release of a prototype ............................................................................................................ 13 
2.6.3. Requirements for the component .................................................................................................................... 13 

2.7. Safety Tools (DSA & RSA) ..................................................................................................................................... 14 
2.7.1. Technical summary ......................................................................................................................................... 14 
2.7.2. Planned date of release of a prototype ............................................................................................................ 15 
2.7.3. Requirements for the component .................................................................................................................... 15 
2.7.4. Suggested bundling of this component with other SOPRANO components .................................................. 17 

2.8. Scalable Simulation-Based Testing (SBT) ............................................................................................................. 17 
2.8.1. Technical summary ......................................................................................................................................... 17 
2.8.2. Planned date of release of a prototype ............................................................................................................ 18 
2.8.3. Requirements for the component .................................................................................................................... 18 
2.8.4. Suggested bundling of this component with other SOPRANO components .................................................. 20 

2.9. Human - Digital Twin (HDT) ................................................................................................................................ 20 
2.9.1. Technical summary ......................................................................................................................................... 20 
2.9.2. Planned date of release of a prototype ............................................................................................................ 21 
2.9.3. Requirements for the component .................................................................................................................... 21 
2.9.4. Suggested bundling of this component with other SOPRANO components .................................................. 22 

2.10. AI Trustworthiness (AIT) ..................................................................................................................................... 22 
2.10.1. Technical summary ....................................................................................................................................... 22 
2.10.2. Planned date of release of a prototype .......................................................................................................... 23 
2.10.3. Requirements for the component .................................................................................................................. 23 
2.10.4. Suggested bundling of this component with other SOPRANO components ................................................ 24 

2.11. Context Extraction Module (CEM) ...................................................................................................................... 24 
2.11.1. Technical summary ....................................................................................................................................... 24 
2.11.2. Planned date of release of a prototype .......................................................................................................... 25 



 SOPRANO Open Call – Technical Description 

13 March 2025  Page 3 

 

2.11.3. Requirements for the component .................................................................................................................. 25 
2.11.4. Suggested bundling of this component with other SOPRANO components ................................................ 26 

2.12. MH-MR Architecting Tools (MAT) ...................................................................................................................... 26 
2.12.1. Technical summary ....................................................................................................................................... 26 
2.12.2. Planned date of release of a prototype .......................................................................................................... 27 
2.12.3. Requirements for the component .................................................................................................................. 27 
2.12.4. Suggested bundling of this component with other SOPRANO components ................................................ 28 

2.13. MLOps Orchestrator (MLO) ................................................................................................................................ 28 
2.13.1. Technical summary ....................................................................................................................................... 28 
2.13.2. Planned date of release of a prototype .......................................................................................................... 28 
2.13.3. Requirements for the component .................................................................................................................. 28 

2.14. AI Model Optimizer (AIO) ................................................................................................................................... 29 
2.14.1. Technical summary ....................................................................................................................................... 29 
2.14.2. Planned date of release of a prototype .......................................................................................................... 30 
2.14.3. Requirements for the component .................................................................................................................. 30 
2.14.4. Suggested bundling of this component with other SOPRANO components ................................................ 31 

2.15. Robotic Capabilities Implementation (RCI)......................................................................................................... 31 
2.15.1. Technical summary ....................................................................................................................................... 31 
2.15.2. Planned date of release of a prototype .......................................................................................................... 32 
2.15.3. Requirements for the component .................................................................................................................. 32 
2.15.4. Suggested bundling of this component with other SOPRANO components ................................................ 32 

2.16. Advanced Visualizations (AVT) ........................................................................................................................... 33 
2.16.1. Technical summary ....................................................................................................................................... 33 
2.16.2. Planned date of release of a prototype .......................................................................................................... 33 
2.16.3. Requirements for the component .................................................................................................................. 33 
2.16.4. Suggested bundling of this component with other SOPRANO components ................................................ 34 

3. How to Start Developing with a SOPRANO Component? ........................................................................................ 34 
 

 

LIST OF MAIN TABLES  

Table 1: Requirements for the Visual Spatial Localization and Mapping Component ....................................................... 5 
Table 2: Requirements for the Object Perception Component ........................................................................................... 6 
Table 3: Requirements for the Non-Visual Localization Component ................................................................................. 8 
Table 4: Requirements for the Human Monitoring Component ....................................................................................... 10 
Table 5: Requirements for the Mapping of high-level plan to Robotic Capabilities Component ..................................... 12 
Table 6: Requirements for the MH-MR Task Allocation Component .............................................................................. 13 
Table 7: Component requirements for Safety Tools Design Safety Assessment (a) ........................................................ 15 
Table 8: Component requirements for Safety Tools Runtime Safety Assessment (b) ...................................................... 16 
Table 9: Requirements for the Scalable Simulation-Based Testing Component .............................................................. 19 
Table 10: Requirements for the Human Digital Twin Component ................................................................................... 21 
Table 11: Requirements for the AI Trustworthiness Component ..................................................................................... 23 
Table 12: Requirements for the Context Extraction Module Component......................................................................... 25 
Table 13: Requirements for the MH-MR Architecting Tools Component ....................................................................... 27 
Table 14: Requirements for the MLOps Orchestrator Component ................................................................................... 28 
Table 15: Requirements for the AI Model Optimizer Component ................................................................................... 30 
Table 16: Requirements for the Robotic Capabilities Implementation Component ......................................................... 32 
Table 17: Requirements for the Advanced Visualizations Component ............................................................................ 33 
  



SOPRANO Open Call – Technical Description  

Page 4  13 March 2025 

Disclaimer 

This document may contain material that is copyright of certain SOPRANO beneficiaries 

and may not be reused or adapted without permission. All the SOPRANO consortium 

partners have agreed to the full publication of this document. The document is provided with 

no warranties whatsoever, including any warranty of merchantability, non-infringement, 

fitness for any particular purpose, or any other warranty with respect to any information, 

result, proposal, specification or sample contained or referred to herein. Any liability, 

including liability for infringement of any proprietary rights, regarding the use of this 

document or any information contained herein is disclaimed. No license, express or implied, 

by estoppel or otherwise, to any intellectual property rights is granted by or in connection 

with this document. This document is subject to change without notice. SOPRANO has been 

financed with support from the European Commission.  

1. INTRODUCTION 

The goal of the SOPRANO Open Call is to recruit SMEs/startups to exploit the SOPRANO 

technologies to develop new demonstrators or enhance an existing demonstrator supporting 

MH-MR scenarios in industrial settings. 

This document provides a detailed description of the SOPRANO architecture and services 

available to beneficiaries under their participation in the SOPRANO Open Call Program (16 

months duration). 

The document shall be treated as an extension of the SOPRANO Guidelines for Applicants 

and should be considered when developing and submitting a proposal under the SOPRANO 

Open Call. 

2. SOPRANO COMPONENTS AVAILABLE FOR THIRD-PARTY DEPLOYMENT AND 

INTEGRATION INTO INDUSTRIAL DEMONSTRATORS 

2.1. Visual Spatial Localization and Mapping (VLM) 

2.1.1. Technical summary 

A robot that navigates a dynamic and partially known environment needs to know its 

position with respect to the surroundings. This requires using on-board sensors to construct 

and maintain a map of the environment, while simultaneously keeping track of the robot’s 

pose (i.e., position and orientation) within that environment. This task is achieved by the 

visual spatial localization and mapping (VLM) module that develops a visual simultaneous 

localization and mapping (vSLAM) system which relies solely on information extracted 

from images. The vSLAM pipeline for real-time location estimation is coupled with a 

component that provides absolute localization, i.e. expresses the camera position and 

orientation in a predefined coordinate system attached to the environment and being external 

to the camera. 

VLM assumes that sufficient texture exists in the environment so that distinct, sparse visual 

features (aka keypoints) can be extracted from the employed images. It provides frequent 6D 

absolute camera pose updates. The absolute localization component relies on representations 

constructed off-line to capture the structure and appearance of the environment in a way that 

accommodates fast look-ups and robust matching for images from a running vSLAM 

session without relying on a pre-deployed infrastructure. 



 SOPRANO Open Call – Technical Description 

13 March 2025  Page 5 

 

2.1.2. Planned date of release of a prototype 

Mid-2025 

2.1.3. Requirements for the component  

VLM outputs the real-time 6D pose of the employed camera. Its requirements are specified 

in Table 1 below.  

Table 1: Requirements for the Visual Spatial Localization and Mapping Component 

Component Name Visual Spatial Localization and Mapping (SC01) 

Type (Software/Hardware/Both) Software 

Short Description Processes video captured by depth (RGB-D) cameras 

using visual SLAM algorithms in order to localize the 

robot and coarsely map its surroundings 

Employed at: Run Time / Design 

Time / Both 

Runtime 

Input requirements 

Input Data from Knowledge Base Yes 

Input Data from Sensors/Context Yes 

Format of Expected Input RGB-D data in raster format; accompanying 

calibration metadata 

Triggered by N/A (runs continuously) 

Interfaces - 

Output requirements 

Main Outputs 6D robot pose estimate 

Output Data to Knowledge Base Yes 

Nature of Expected Output Timestamped poses (e.g., ROS message) 

Hardware & software requirements 

Software Requirements Ubuntu and Docker (libraries such as OpenCV, Boost, 

Eigen, OpenGL/GLUT, g2o, librealsense, ROS, etc. will 

be included in the docker image) 

Hardware Requirements PC (#cores >= 6, RAM>=32 GB, GPU w VRAM ≥ 

6GB), RGB-D camera, network interface, large disk 

(>= 1Tb) 

Communications pub/sub platform 

Special Communication 

Requirement 

- 

Integration Requirements RGB-D camera 

Deployment Requirements Docker, screen, network connectivity, remote access 

control 



SOPRANO Open Call – Technical Description  

Page 6  13 March 2025 

2.2. Object Perception (OBP) 

2.2.1. Technical summary 

The Object Perception (OBP) component aims to provide real-time detection and 6D pose 

estimation of objects within the robot's operating environment. Depending on the use case, 

object perception may range from object detection, identifying and classifying objects in 2D 

and estimating their position in 3D, to 6D object pose estimation, providing the precise 

position and orientation of object(s) to support robotic manipulation and grasping. OBP 

exploits input from RGB and RGB-D sensors to estimate the 6D pose of a specific set of 

objects, even in cases of partial occlusions, ensuring reliable performance in diverse 

scenarios. This capability supports various robotic manipulation tasks such as grasping, 

screwing/unscrewing. OBP also automates the process of training data generation for 6D 

pose estimation, facilitating scalability and efficient dataset augmentation. This is essential 

for the continuous improvement of object detection and pose estimation algorithms. 

During runtime, upon initialization, the OBP component processes visual data from offboard 

and onboard cameras, to detect objects of interest. This involves identifying and classifying 

objects in 2D or 3D to ensure safety and operational efficiency. Concurrently, upon request, 

OBP will detect objects and estimate their position or 6D pose in real-time, along with an 

unbiased confidence measure for the quality of the 6D pose, before any robotic action (i.e. 

grasping) is attempted. Outputs from OBP, including 2D segmentation masks, 6D poses, 

and confidence scores, are exploited by other SOPRANO components released for 

deployment and integration in the framework of the Open Call, such as Human Monitoring, 

MH-MR Task Allocation (CTA), Robotic Capabilities Implementation, and Safety Tools. 

2.2.2. Planned date of release of a prototype 

Mid-2025 

2.2.3. Requirements for the component  

The development of OBP primarily occurs within the Linux environment, utilizing Python 

as the primary programming language, with additional software requirements such as 

libraries for the interface with the RGB-D cameras to be utilized and the GPU (the exact 

software requirements are pending determination). Hardware requirements include RGB-D 

cameras to capture RGB or RGB-D data, essential for the component’s object perception 

tasks. Given its reliance on deep learning methodologies, OBP requires an NVIDIA GPU 

(VRAM ≥ 16GB, Compute Capability ≥ 8.6) for efficient execution of complex neural 

network algorithms. Moreover, OBP should operate within resource-constrained embedded 

systems like NVIDIA Jetson, balancing between performance and power consumption. 

Communication protocols such as Kafka and ROS2 facilitate seamless interaction with 

external systems and devices. For streamlined deployment processes, Docker emerges as the 

preferred method, offering scalability, consistency, and portability across diverse computing 

environments. 

Table 2: Requirements for the Object Perception Component 

Component Name Object Perception (SC02) 

Type 

(Software/Hardware/Both) 

Software 

Short Description Exploit input from camera sensors to detect in 2D and 3D objects 

as well as estimate the 6D pose (translation and rotation) of 

objects to support robot manipulation 



 SOPRANO Open Call – Technical Description 

13 March 2025  Page 7 

 

Employed at: Run Time / 

Design Time / Both 

Runtime 

Input requirements 

Input Data from Knowledge 

Base 

Yes*(object models, DL model) 

Input Data from 

Sensors/Context 

Yes 

Format of Expected Input RGB-D data , calibration data  

Triggered by Another module for grasping /manipulation action or runs 

continuously for monitoring action 

Interfaces ROS 

Output requirements 

Main Outputs 6D object pose, 3D position, 2D segmentation mask, class id, 

object id, BBox, confidence score 

Output Data to Knowledge 

Base 

Yes 

Nature of Expected Output  ROS message  

Hardware & software requirements 

Software Requirements Linux (Ubuntu and Linux 4 Tegra) environment, Python, 

PyTorch, C++, CUDA, ONNX Runtime, librealsense, OpenCV, 

Kafka, ROS, Docker (depending on the UC) 

Hardware Requirements ARM: NVIDIA Jetson AGX (# CPU cores ≥ 8, RAM ≥ 32 GB, # 

GPU cores ≥ 512, GPU Compute Capability ≥ 7.2, storage ≥ 1 

TB) 

x86: # CPU cores (physical) ≥ 14, RAM ≥ 32GB, storage ≥ 1TB, 

NVIDIA GPU (VRAM ≥ 16GB, Compute Capability ≥ 8.6) 

RGB-D cameras: Intel RealSense D405, Intel RealSense D456 or 

D457, ZEDx, ZED2i 

Communications Kafka, ROS 

Special Communication 

Requirement 

None 

Integration Requirements Docker, RGB-D camera 

Deployment Requirements Docker, network connectivity, remote access control 

2.2.4. Suggested bundling of this component with other SOPRANO components  

The component can be integrated with Human Monitoring (HMO), AI Model Optimizer 

(AIO), Mapping of High-level Plan to Robotic Capabilities (MRC) and Robot Capabilities 

Implementation (RCI). 

2.3. Non-Visual Localization (NVL) 

2.3.1. Technical summary 

Robot localization is the process of determining where a mobile robot is located with respect 

to its environment. The Non-Visual Localization (NVL) component thus targets the real-

time monitoring of the robot’s position and orientation, as well as its surrounding 

environment, using non-visual (input) data and sensors. Additionally, information on its 

dynamics (e.g. velocity) as well as a measure of the uncertainty of the location estimate can 

be conveyed. In rough terms, NVL can be distinguished into two broad categories, 



SOPRANO Open Call – Technical Description  

Page 8  13 March 2025 

depending on the environment in which the robot operates.  These are outdoor and indoor 

localizations. Within the framework of SOPRANO, both cases are considered. 

For the first case (outdoor positioning), localization is based on the integration of GNSS and 

IMU sensors. These input data can provide accurate estimates of both the robot's position 

and its dynamics (velocities and instantaneous acceleration). The challenge here, however, is 

the implementation of a robust and efficient data fusion and estimation algorithm. For this 

purpose, an Extended Kalman Filter will be employed, integrating sensor measurements to 

gain optimal, real-time state estimates. This configuration allows for correctly dealing with 

noisy data (if such a situation arises) and additionally generates not only an estimate of the 

robot's location but also a measure of the uncertainty of the location estimate. To transform 

these estimates into something useful for the robot’s operation and share information with 

other operational nodes, these estimates need to be transformed to a “local” reference frame. 

A prerequisite for this task will be the availability of a map of the area of operation. The 

map shall be available during operation, and the component will thus be able to deliver real-

time position estimates within the area of operation. Additionally, geometric information on 

Points of Interest will be available on user request (e.g. distance) which can be correlated 

with navigation and/or other working components. 

In the case of indoor localization, the use of GNSS is, in general, not possible. To perform 

robust localization, a set of sensors will be used, depending on the use case. These sensors 

include: (a) a laser scanner offering 2D LiDAR measurements as well as a reliable solution 

for maximizing safety and preventing potentially unsafe situations, coupled with (b) mm-

Wave Radar Sensors coupled with high resolution ultrasound sensors; these sensors use 

frequency to calculate distance and will be installed on each side of the robot and on the 

arm(s). Thus, the sensors measure the target range and its relative velocity simultaneously. 

Yet another option will be direction-finding and indoor positioning via the well-known 

Angle-of-Arrival method using wireless sensors (e.g. Bluetooth). The development of the 

additional subsystems that will be embedded in the indoor robotic platform will not disrupt 

current protocols and data transfer/processing procedures. The use of the current data 

transfer bus will be the top priority in the embedding procedure. Mechanical and electrical 

characteristics will be selected to be compatible with each platform’s characteristics in order 

to avoid excessive use of adapting and reconfiguring processes and devices. The whole 

processing sequence will run on an independent processing platform in order for only the 

required data to be able to be sent to the available data bus, and possible failures will not 

affect any existing automated operation. Results and outputs of both indoor and outdoor 

localization will be produced in real-time and instantaneously made available to other nodes 

of operation. 

2.3.2. Planned date of release of a prototype 

Mid-2025 

2.3.3. Requirements for the component  

Detailed hardware & software requirements for NVL can be found in Table 3 below. 

Table 3: Requirements for the Non-Visual Localization Component 

Component Name Non-Visual Localization (SC03) 

Type 

(Software/Hardware/Both) 

Software 

Short Description Non-visual sensing devices coupled with software components 



 SOPRANO Open Call – Technical Description 

13 March 2025  Page 9 

 

to accurately detect the location and orientation of objects of 

interest 

Employed at: Run Time / 

Design Time / Both 

Runtime 

Input requirements 

Input Data from Knowledge 

Base 

Yes. Points of interest for area under consideration and map of 

area. 

Input Data from 

Sensors/Context 

Yes. Sensor data/measurements of the onboard (relevant) sensors 

(described above). 

Format of Expected Input Sensor data in custom format (depending on hardware). Points of 

interest in xml or serialized format (e.g. json). 

Triggered by Requested by the user or automatically delivered in real-time. 

Interfaces ROS-msg, ROS configuration, serialized messages at output, 

Kafka (optional/experimental) 

Output requirements 

Main Outputs Position estimates, kinematic information, spatial information 

Output Data to Knowledge 

Base 

Plain ascii or serialized data (e.g. json) containing timestamp, 

robot coordinates (in local system), kinematic information (e.g. 

velocity components and norm). 

Nature of Expected Output Kinematic and dynamics info of the robot at selected times; 

spatial and geometric info. 

Hardware & software requirements 

Development Environment On premise (ROS, python, C if needed). 

Software Requirements Python (version 3), C compiler preferably gcc or clang (if 

needed), ROS (selected nodes), Docker 

Hardware Requirements OS, ROS 

Communications TCP/IP 

Special Communication 

Requirement 

None 

Integration Requirements ROS, Docker, Python 

Deployment Requirements ROS, Docker, Screen 

 

2.4. Human Monitoring (HMO) 

2.4.1. Technical summary 

The HMO component is, among others, responsible for detecting the location and body pose 

of multiple humans. This functionality is provided by the 3D Human Pose Estimation (3D-

HPE) subcomponent. 3D-HPE provides a vision-based framework for real-time, marker-less 

3D human pose estimation and, optionally, the classification of ergonomic postures 

performed in real, dynamic operational environments. The primary input is online visual 

data streams (RGB and optionally depth) acquired by one or more camera sensors, which 

can be stationary or mounted on a moving platform, to monitor humans in indoor or outdoor 

settings. 

3D-HPE primarily focuses on determining the location and 3D articulated body pose of one 

or multiple humans. Given a standard 3D skeletal body model (body_25 or coco), it 



SOPRANO Open Call – Technical Description  

Page 10  13 March 2025 

dynamically identifies the coarse body location and orientation in the form of a 2D or 3D 

rectangular bounding box and the 2D/3D positions and orientations of up to 25 anatomical 

key points of the human body, i.e. body joints (e.g., elbows, knees, shoulders, hips). 

Confidence scores are also provided. 3D-HPE supports the dynamic adaptation of the 

estimated human pose to different human body metrics and provides robustness under body 

occlusions and challenging environmental conditions. The output is represented in the 

camera coordinate system or any other global coordinate system of the environment 

provided. Optional functionality and related output (ergonomic posture id and score) for 

evaluating the estimated body postures is also supported with the aim to enhance human 

ergonomic awareness and safety. The component performs in real-time, provided that its 

hardware requirements are met. 

2.4.2. Planned date of release of a prototype 

Mid-2025 

2.4.3. Requirements for the component  

3D-HPE is developed on top of a core C++ library utilizing Python (as a wrapper) as the 

primary programming language with additional third-party open libraries for the interface 

with the RGB-D cameras and the GPU processing of deep network models. Hardware 

requirements include RGB or RGB-D cameras to capture time-synchronized colour and 

optionally depth data streams to drive the component’s human pose estimation and postural 

assessment functionalities. The component requires a workstation desktop PC equipped with 

NVIDIA GPU (VRAM ≥ 16GB, Compute Capability ≥ 8.6) for efficient execution of 

complex neural network algorithms. For streamlined deployment, Docker is the preferred 

method, offering scalability, consistency, and portability across diverse computing 

environments. 

Table 4: Requirements for the Human Monitoring Component 

Component Name 3D Human Pose Estimation (3D-HPE) (SC04) 

Type 

(Software/Hardware/Both) 

Software 

Short Description Processes video captured by one or more colour and depth 

cameras for human pose estimation in 3D and postural 

assessment 

Layer Local 

Employed at: Run Time / 

Design Time / Both 

Runtime 

Input requirements 

Input Data from Knowledge 

Base 

Yes 

Input Data from 

Sensors/Context 

Yes 

Format of Expected Input Online visual sensory data (RGB-D images/image sequences, 

point clouds), ground truth annotation data (cvs, json, bvh), 

static data related to the cameras’ placement and calibration 

parameters. 

Triggered by Manual by system operator - Auto (on request by external 

components) 

Interfaces POST (HTTP) messaging protocol (publish-subscribe or 



 SOPRANO Open Call – Technical Description 

13 March 2025  Page 11 

 

queuing), Docker 

Output requirements 

Main Outputs Body location in 2D/3D, skeletal body pose in 2D/3D, 

classified body posture and ergonomic score, confidence scores 

Nature of Expected Output Visualization for estimated human parameters/postures. 

At runtime: message types (data format needs to be defined, 

e.g. <Message ID, topic type, score, location, pose, workerID, 

timestamp>), 

Offline: Datasets of videos, annotations related to human 

monitoring tasks. 

Hardware & software requirements 

Development Environment On-premise and cloud environments 

Software Requirements Docker, Python, PyTorch, Tensorflow, Docker  

Hardware Requirements PC (minimum requirements #cores >= 12, RAM>= 24 GB, 

GPU-accelerated Compute capability>8.5) RGB-Depth cameras 

(stereo or ToF, e.g. StereoLabs ZED 

Communications Messaging protocol over local network 

Special Communication 

Requirement 

Real-time communication, messaging format able to 

accommodate folded data and list of structured data (e.g. 1D or 

2D list of numbers), json format for messages, REST API 

endpoints. 

Integration Requirements Docker. Onboard online data processing and RGB-D data 

acquisition (camera). 

Deployment Requirements Docker, screen, network connectivity, remote access control 

2.4.4. Suggested bundling of this component with other SOPRANO components  

The component can be integrated with the Object Perception (OBP) component. 

 

2.5. Mapping of High-level Plan to Robotic Capabilities (MRC) 

2.5.1. Technical summary 

Within the SOPRANO system, the task mapping component is designed to provide robust 

functionalities for the decomposition of high-level plans into executable robotic actions, 

ensuring adaptability and customization across robotic platforms and industrial scenarios. 

Platforms considered are the UR10 Platform and FELICE mobile manipulator platforms, 

and the KUKA platform. The component's primary services include task decomposition, 

capability mapping, and execution planning. At design-time, the component decomposes 

complex assembly plans into elementary actions, identifies the suitable robotic capabilities 

required for each action, and maps these actions to various robotic platforms, considering 

their unique kinematic and dynamic properties. The component leverages a behaviour tree-

based framework as a potential approach to represent and manage the execution of tasks, 

ensuring modularity, flexibility, and readability of the task execution plans. Additionally, it 

adapts dynamically to environmental changes and platform variations, facilitating seamless 

task execution and enhancing the system's scalability and efficiency in multi-robot settings. 

Dependencies on other components include integration with perception modules for real-

time environmental feedback and interaction with motion planning and robot control 

modules to ensure accurate and effective task execution. 



SOPRANO Open Call – Technical Description  

Page 12  13 March 2025 

2.5.2. Planned date of release of a prototype 

Mid-2025 - early prototype 

2.5.3. Requirements for the component 

Table 5: Requirements for the Mapping of high-level plan to Robotic Capabilities Component 

Component Name Mapping of high-level plan to Robotic Capabilities (SC05) 

Type 

(Software/Hardware/Both) 

Software 

Short Description Development of algorithms & methodologies for decomposing 

high-level plans into elementary robotic actions accommodating 

variations in platform capabilities - UR10 Platform and FELICE 

mobile manipulator platforms; KUKA platform 

Employed at: Run Time / 

Design Time / Both 

Design Time 

Input requirements 

Input Data from Knowledge 

Base 

Yes 

Input Data from 

Sensors/Context 

Likely required (Final Prototype with configurable mapping) 

Format of Expected Input ros2 topic/ros2 actions 

Triggered by SOPRANO ID6 

Interfaces ROS 2 

Output requirements 

Main Outputs Task execution plan,  

Output Data to Knowledge 

Base 

n/a EP; New mapping possibilities FP 

Nature of Expected Output ros2 topic/ros2 actions 

Hardware & software requirements 

Software Requirements Docker, Python 

Hardware Requirements Docker 

Communications Ros, whatever useful to integrate with Knowledge-Base 

Special Communication 

Requirement 

None 

Integration Requirements Partner-Actions implemented as Ros2-Action 

Deployment Requirements Partner-Actions implemented as Ros2-Action 

2.5.4. Suggested bundling of this component with other SOPRANO components  

The component can be integrated with MH-MR Task allocation (CTA) and Object 

Perception (OBP). 

 



 SOPRANO Open Call – Technical Description 

13 March 2025  Page 13 

 

2.6. MH-MR Task Allocation (CTA) 

2.6.1. Technical summary 

The CTA module is responsible for coordinating and enhancing collaboration among agents 

in collaborative tasks. It aims to maximize their effectiveness by optimizing mutual support 

and exploiting their individual skill sets to benefit the team. 

This functionality is achieved through the Daisy Planner (DP) that considers the assignment 

of tasks to the agents participating in a collaborative task. The CTA-DP uses prior 

knowledge regarding the primitive actions each agent is able to execute and how these 

actions can be combined in a meaningful way to implement complex behaviours. The CTA-

DP guides agents in sequentially and efficiently executing assigned behaviours. It also 

accounts for overlapping behaviours among different agents, ensuring their timely 

interaction within collaborative tasks. In that way it enhances the overall system 

performance and supports effective teamwork among agents in complex environments. 

During operation it assesses the designed action assemblies against criteria related to the 

performance of each agent on the individual actions and other designer-specified criteria 

(e.g. task priorities, or energy consumption), to specify the next agent task that will make the 

agent maximally useful for the team. The CTA-DP enhances the coordination of the 

collaborating agents by taking into account the preconditions for the execution of the tasks 

undertaken by an agent and directing the other team members to act in a manner that 

satisfies these preconditions. 

The CTA-DP uses background information stored in an initialization file which regards the 

tasks addressed in the given work environment, the preconditions for the execution of tasks 

and the skills of the involved robots which will be evaluated under relevant criteria (e.g. 

implementation time per agent). 

The CTA-DP is provided as a ROS2 executable package that can be easily configured by the 

user/designer to support the implementation of multi-agent tasks. 

2.6.2. Planned date of release of a prototype 

Autumn 2025 

2.6.3. Requirements for the component  

The CTA-DP is a lightweight component that operates as a node within a ROS2 

environment, enabling seamless communication with collaborating agents. Additionally, it 

is necessary to have two-way communication with all perception and action components in 

the given application to make timely and informed decisions. The CTA-DP outputs high 

level commands directed to the collaborating agents, following the task and action names 

specified by the user during initialization.  

Table 6: Requirements for the MH-MR Task Allocation Component 

Component Name MH-MR Task Allocation (SC06) 

Type 

(Software/Hardware/Both) 

Software 

Short Description The module assigns tasks to the members of a multi-agent team 

in order to coordinate and enhance collaborative operation 

Employed at: Run Time / Runtime 



SOPRANO Open Call – Technical Description  

Page 14  13 March 2025 

Design Time / Both 

Input requirements 

Input Data from Knowledge 

Base 

No. It needs static information that can be provided by the 

designer in a YAML structured initialization file. The 

information required includes: the task involved in each 

collaboration scenario, the prerequisites for each task, the 

behavioural skill of the participating agents in the form of 

performance scores (e.g.  implementation time, success rate) and 

other application specific criteria specified by the user (e.g. 

energy consumption). 

Input Data from 

Sensors/Context 

Yes 

Format of Expected Input ros2 topic/ros2 actions 

Triggered by No particular triggering - Continuous monitoring of robot & 

environment state changes 

Interfaces Consumes messages reporting state changes. Determines the 

next robot task 

Output requirements 

Main Outputs Task allocation, short-scale decisions 

Output Data to Knowledge 

Base 

No 

Nature of Expected Output ros2 topic/ros2 actions 

Hardware & software requirements 

Software Requirements ROS2  

Hardware Requirements No 

Communications ros2 topic/ros2 actions 

Special Communication 

Requirement 

ROS2 

Integration Requirements ROS2 environment 

Deployment Requirements ROS2 environment 

2.7. Safety Tools (DSA & RSA) 

2.7.1. Technical summary 

The Safety tools framework is intended to enable supervision of human safety in human-

robot interaction workplaces. It is composed of two components: The safety assessment 

module that occurs at design stage (DSA) and the safety assessment that occurs at runtime 

(RSA). The overall framework is capable of dynamically examining the risk associated with 

operations in Human-Robot collaborative workplaces, and mitigating the risk based on 

adaptive safety strategy that ensures accident avoidance while reducing untimely 

interruptions of operations. 

The DSA component is used at design time to conduct an offline scenario-based risk 

assessment. It relies on the system's specifications including system behavioural and 

architectural information, environmental and operational context information. 

Environmental information is captured as an Operational Design Domain (ODD) model to 

ensure that the overall scenario-space of the robot is correctly and somehow completely 

formalized. The system architectural information is modelled through a design model. From 



 SOPRANO Open Call – Technical Description 

13 March 2025  Page 15 

 

these inputs, one can identify the causal chains of events (failure scenarios) that may lead to 

accidents or undesirable behaviours in the working environment. Note that the failure 

scenarios identification can be completed with a review of existing accident databases and 

an analysis of safety standards. The damage the identified failures scenarios may cause are 

then evaluated using chosen criticality level metrics to better identify those on which risk 

reduction measures must be taken as a priority. 

Risk reduction measures (preventive measures, and/or corrective measures) must be 

recommended according to the assessed risk to increase safety and reduce accidents. One 

must define a context-dependent and configurable mitigation strategy to trigger control 

actions aiming at avoiding accidents according to safety thresholds.  Those control actions 

depend also on the mode of operation of the machinery, e.g. remotely controlled, semi-

automatic, or fully autonomous. Note that the safety analysis defines rules to help enforce 

some existing control actions that the robot can perform (as part of the robot capabilities) 

whenever a critical situation is identified, but it is not developing novel control actions. 

2.7.2. Planned date of release of a prototype 

The planned release of the Safety Tools prototype is divided into two key stages to reflect 

the progressive development of the methodology and tools: 

▪ Mid-2025 - a prototype of the DSA module, encompassing our methodology along 

with complementary classical safety methods (FMEA, FTA, SHA, and STPA). This 

release will include both the analytical framework and the necessary integration with 

ODD modelling to support comprehensive scenario-based risk assessments. 

▪ End-2025 - the RSA module, focusing on real-time risk monitoring and adaptive 

safety management. 

2.7.3. Requirements for the component  

Detailed hardware and software requirements for DSA can be found in Table 7 below: 

Table 7: Component requirements for Safety Tools Design Safety Assessment (a) 

Component Name Safety Tools Design Safety Assessment (SC07a) 

Type 

(Software/Hardware/Both) 

Software 

Short Description The module uses the system's specifications (including 

architectural design information), environmental & operational 

context to conduct scenario-based risk assessment at design time 

Employed at: Run Time / 

Design Time / Both 

Design Time 

Input requirements 

Input Data from Knowledge 

Base 

Yes 

Input Data from 

Sensors/Context 

No 

Format of Expected Input text-based, UML/XMI format 

Triggered by N/A 

Interfaces N/A 

Output requirements 



SOPRANO Open Call – Technical Description  

Page 16  13 March 2025 

Main Outputs Customized risk analysis, model of risk scenarios, risk 

assessment report, risk mitigation strategies 

Output Data to Knowledge 

Base 

risk analysis, risk mitigation 

Nature of Expected Output UML/Ecore model (xml), Report 

Hardware & software requirements 

Software Requirements Eclipse Papyrus standalone plugins 

Hardware Requirements no special hardware requirement foreseen 

Communications No specific 

Special Communication 

Requirement 

No specific 

Integration Requirements No specific 

Deployment Requirements No specific 

  

At operational time, the RSA implements the concepts of situational awareness and adaptive 

safety. The RSA relies on the robot’s perception system to gather in real time information 

about the entities present in the supervised workspace, and the results from the DSA 

component i.e. the safety assessment results and the mitigation strategy.  

Data collected from the sensing system are processed to identify environmental parameters 

and reliable positioning/detection of the surrounding entities in the supervised workplace, 

together with additional characteristics such as their speed, orientation, relative distance, etc. 

The DSA results are encoded as a safety dynamic model to predict potential hazardous 

situations in real-time. It uses an event-driven algorithm to evaluate automatically the risk 

level incurred for the humans in operation from the observed events compared to the 

formalized safety model and launch accordingly the appropriate risk reduction measures. 

The reduction measures may be either implemented as a visual, audible or text alert in a 

console. Table 8 presents detailed hardware & software requirements for RSA. 

Table 8: Component requirements for Safety Tools Runtime Safety Assessment (b) 

Component Name Safety Tools Runtime Safety Assessment (SC07b) 

Type 

(Software/Hardware/Both) 

Software 

Short Description The module makes use of the DSA results, sensors data to 

conduct risk assessment runtime 

Employed at: Run Time / 

Design Time / Both 

Run Time 

Input requirements 

Input Data from Knowledge 

Base 

No 

Input Data from 

Sensors/Context 

Yes 

Format of Expected Input xml/ros 

Triggered by Event-driven from input components or collected periodically 

Interfaces depending of the data collection environment 

Output requirements 



 SOPRANO Open Call – Technical Description 

13 March 2025  Page 17 

 

Main Outputs automated safety supervision component, safety enforcement 

component 

Output Data to Knowledge 

Base 

to be defined (model, text-based) 

Nature of Expected Output ROS, code 

Hardware & software requirements 

Software Requirements Eclipse Papyrus standalone plugins 

Hardware Requirements robotic platform related 

Communications No specific 

Special Communication 

Requirement 

No specific 

Integration Requirements No specific 

Deployment Requirements No specific 

 

The DSA component requires Eclipse Papyrus and model-driven engineering (MDE) tools 

to allow the ODD modelling, the system design modelling and the offline risk assessment. 

The RSA is implemented in the convenient language for its on-boarding on simulation 

platforms, on the robot, on an external device dedicated to safety monitoring. In general, it 

requires Python and ROS/ROS2.  

2.7.4. Suggested bundling of this component with other SOPRANO components  

The Safety Tools component is designed to operate independently, ensuring robust safety 

assessment and monitoring within human-robot collaborative environments. Its core 

functionalities do not require mandatory interaction with other SOPRANO components, 

making it a standalone solution for many applications. 

However, optional integration with certain components enhances its capabilities and 

broadens its use. For example, integrating with SBT allows for the validation and testing of 

safety rules and mitigation strategies under diverse simulated scenarios. SBT can leverage 

the ODD scenarios and safety rules generated by DSA, enabling more comprehensive 

simulation campaigns. Additionally, RSA outputs, such as real-time safety metrics, can 

provide valuable data for performance tracking during simulations. 

 

2.8. Scalable Simulation-Based Testing (SBT) 

2.8.1. Technical summary 

The SOPRANO SBT module aims to anticipate via simulation-based testing faults/failures 

that may impact the MH-MR composite system. 

The SOPRANO user will initialize the process by specifying parameters for the simulation, 

including a testing space configuration and candidate scenario to be analysed. Following 

this, a testing loop will be executed, as described in the following paragraph, to find the 

specific faults/failure modes that the scenario exhibits, optionally incorporating feedback 

from other SOPRANO tools. According to the test configuration, the SBT module will 

inject specific manipulations such as distorted, deleted and delayed messages, and altered 

configuration or runtime parameters. It will then assess the scenario with respect to the 



SOPRANO Open Call – Technical Description  

Page 18  13 March 2025 

given performance and safety metrics, and focus the testing upon the most significant 

incidents. The SBT component will provide experimental results to the user and other 

SOPRANO components about the set of faults and failures discovered during testing of the 

selected scenario, together with (optionally) a trained predictor for anticipating simulation 

performance given that scenario.  

In order to search the large space of potential faults/failures in a given scenario in a timely 

manner, a distributed architecture will be used for scalable and model-based SBT upon a 

cluster of collaborating PCs. A centralized experiment manager maintains an evolutionary 

experimental loop, keeping a population of test configurations and associated results, and 

dispatching tests to worker nodes. Containers or archives to execute the simulation will be 

transmitted to the worker from a data repository and augmented for SBT testing. For each 

test, generated code is shared from the experiment runner to participating worker nodes. 

This auto-generated code includes test runners, which specify a selection of faults/failures 

for that test, and their activation conditions. With the augmented simulator in place, the 

worker nodes will then execute the test runners, which launch the simulation and inject the 

fault/failures as configured. Result metric values (which quantify violations of MH-MR 

performance/safety requirements) and simulator logs are tracked upon the relevant worker 

node and communicated back to the central experiment runner. In order to guide the testing 

campaign intelligently, information from the scenario structure, and statistics of previously 

executed simulations can be used to predict performance and safety violation metric values 

and guide the direction of a new testing campaign. The intent behind this is for the 

component user to discover the vulnerabilities (for example, components or scenario 

features which are sensitive to or intolerant of these manipulations) and allow end users to 

refine their design in simulation before deployment. 

2.8.2. Planned date of release of a prototype 

The planned release of STB is partitioned into two key stages to reflect its progressive 

development: 

▪ By mid-2025 - SBT prototype with the scalable architecture will be released 

▪ By end-2025 - the SBT component enhanced with the predictor will be released  

2.8.3. Requirements for the component  

The SBT component requires Linux (recommended: Ubuntu 22) or higher installed on the 

experiment manager PC and worker nodes. It is possible to run both the experiment manager 

and worker node upon the same PC in early-stage testing, but ideally a cluster would be 

used with multiple PCs upon the same LAN for low-latency connectivity between them. In 

order for SBT to test a custom or proprietary simulator, the simulator must provide an API 

capable of making the necessary manipulations at runtime (for example, altering or deleting 

messages or deactivating components/changing parameters). For ROS/ROS2/Gazebo 

simulations, this is implemented via the standard ROSbridge component. If source code is 

available for the simulator, it may be possible to add a suitable interface.    

The experiment manager is provided as a Docker image and provides a GUI to allow 

experiment reconfiguration and execution via the testing DSL interface in Eclipse. The 

experiment manager system uses an internal SSH daemon/rsync to interchange generated 

code with worker nodes. Upon the worker nodes, Python and Maven are required, together 

with Docker and ROS2. The associated Java dependencies for SBT are downloaded by 

Maven during compilation. The Java test runners on the worker node will communicate with 



 SOPRANO Open Call – Technical Description 

13 March 2025  Page 19 

 

the simulations either over ROSbridge/jrosbridge (ROS/ROS2) or a gRPC interface for 

other robotic simulators (e.g., the DDD simulator from the project partner TTS).  MS 

Windows specific simulations would have to be negotiated to verify that they can be 

supported.  

Detailed hardware and software requirements for SBT can be found in Table 9 below: 

Table 9: Requirements for the Scalable Simulation-Based Testing Component 

Component Name Scalable Simulation-Based Testing (SC08) 

Type 

(Software/Hardware/Both) 

Software 

Short Description Simulation-based testing tools for MH-MR systems for testing 

the functionality and robustness of systems in simulation. 

Input requirements 

Input Data from Knowledge 

Base 

Worker behaviour status from knowledge base and context, 

collision information 

Input Data from 

Sensors/Context 

SBT doesn't receive runtime sensor data, only simulated sensors. 

Context change may trigger a fault by conditions, or context may 

be tracked for performance metrics 

Format of Expected Input Messages according to agreed formats 

Triggered by Event-driven from input components (e.g., ROS topics) 

Interfaces gRPC/rosbridge - also JSON or typed messages (ROS) 

Output requirements 

Main Outputs Result metrics, Logs of failure configurations, Failure predictor 

Output Data to Knowledge 

Base 

Failure configurations for selected scenario/failure predictor 

Nature of Expected Output Simulation results (models) containing failure cases (Pareto 

front) 

Hardware & software requirements 

Development Environment Cloud or locally provisioned cluster of PCs 

Software Requirements On workers: Python, Maven, Docker, Java, ROS2 and associated 

JAR/pip packages. Simulator environment (e.g., Gazebo, ROS). 

On experiment runner; Eclipse and MDE tools 

Hardware Requirements Cluster of PCs with IP connectivity for running simulations - 

probably 8-core i7 or above on each worker, with GPU 

Communications TCP/IP between nodes, Kafka message broker on each worker 

node. SSH/SMB filesystem or other data sharing mechanism on 

data manager/experiment runner 

Special Communication 

Requirement 

Direct low-latency connection between each worker and TTS 

simulator.  

Integration Requirements Needs communications with the safety tools to extract risks for 

metric templates, as well as other components mentioned above 

at simulation time 

Deployment Requirements Cluster of PCs as stated above, ideally with the number of 

workers as large as the population size. AWS may not be cost-

effective given the need for GPUs 



SOPRANO Open Call – Technical Description  

Page 20  13 March 2025 

2.8.4. Suggested bundling of this component with other SOPRANO components  

Bundlings are compulsory since SBT can operate independently, but it may also operate 

alongside the following SOPRANO components: 

▪ Safety Tools - DSA and RSA 

▪ Human-Digital Twin (HDT) 

 

2.9. Human - Digital Twin (HDT) 

2.9.1. Technical summary 

The Human Digital Twin (HDT) component provides a virtual representation of human 

workers, capable of simulating real human movements during manufacturing and 

assembling tasks as well as interactions with robots within a work environment. The HDT 

component enables importing a digital representation in “GLTF” format of a worker’s body, 

also referred to as a mesh, along with a digital skeleton. Additionally, a HDT is 

characterized by other parameters such as skills required to perform a task. End users can 

define worker skills using specific stochastic distributions which represent the ability to 

execute a task according to scheduled timing and within tolerance limits. The HDT 

prototype can be further customized by developing appropriate Java algorithms. 

This HDT prototype is seamlessly integrated into our Digital Twin Service platform. This 

platform allows the creation of a virtual working environment where digital twins of 

workers and robots collaborate and interact to complete tasks. The ultimate goal of the HDT 

component, integrated into the Digital Twin Service platform, is to investigate various 

situations of human-robot collaboration within the same fenceless workspace using discrete 

event simulation. This component facilitates the identification of potential safety failure 

points and minimizes the risk of unforeseen collisions. A robot collision detection module 

has been developed, based on two-three different customizable safety zones. Each zone can 

trigger specific robot reactions when a worker or an obstacle is detected. For instance, the 

robot stops immediately when a worker enters the “stop zone” and resumes its motion 

automatically once the area is cleared. These robot behaviours can be tailored by developing 

specific Java algorithms and tested within the virtual environment. Additionally, the virtual 

robot can be equipped with virtual sensors, based on infrared or safety laser scanner 

technologies, to detect workers and obstacles. These sensors emulate the behaviour, data and 

characteristics of real physical sensors and provide raw data for the collision detection 

module. 

The virtual robot can also be connected to the real robot controller to test its robustness in 

avoiding obstacles and workers. In this configuration, the virtual environment simulates the 

robot’s movements in space and sends data generated by the virtual sensors to the real 

controller. This data is processed by the safety procedures implemented in the robot 

controller system, and the corresponding robot commands are sent back to the virtual one. 

This closed-loop allows testing and debugging the robot’s safety procedures to enhance their 

reliability and robustness. In fact, the HDT component can interact with the scalable 

simulation-based testing (SBT) tools to analyse many different scenarios aiming to identify 

failures in the safety procedures in the robot control unit, ensuring a safer and more reliable 

collaborative work environment between workers and robots. 2.9.2. Functionalities 

developed specifically for the SOPRANO industrial use cases  



 SOPRANO Open Call – Technical Description 

13 March 2025  Page 21 

 

A specific virtual environment has been created for representing a SOPRANO industrial use 

case using our Digital Twin Service platform. In particular, a virtual mobile platform 

equipped with an anthropomorphic robot and its sensor system has been developed, and 

their behaviours have been simulated. An HDT instance was, then, created to represent a 

worker collaborating with the virtual robot.  

The available DT prototypes in the Digital Twin Service platform can be reused to create a 

new simulation environment. However, they require customization by adjusting input 

parameters and developing specific Java algorithms to accurately simulate the real 

behaviours of the physical assets of an MH-MR system. 

2.9.2. Planned date of release of a prototype 

End-2025 

2.9.3. Requirements for the component  

The HDT component functions exclusively within our Digital Twin Service Platform, as it 

enables the instantiation of digital twins and the creation of simulation models. This 

platform operates under Windows or Linux operating systems. Utilizing the HDT 

component requires the development of a new simulation model representing the real 

system to be analysed. Simulating MH-MR systems involves creating a virtual 

representation of robots, workers and workspace as well as developing safety and 

operational rules to ensure accurate tasks simulation. Proficiency in creating and managing 

simulation models along with strong skill in developing Java code is essential. 

Detailed hardware and software requirements for HDT can be found in Table 10 below. 

Table 10: Requirements for the Human Digital Twin Component 

Component Name Human Digital Twin (SC09) 

Type 

(Software/Hardware/Both) 

Software 

Short Description The module creates a digital representation of human workers, 

seamlessly integrated within the digital twin service platform 

that provides the virtual environments for simulations 

Employed at: Run Time / 

Design Time / Both 

Both 

Input requirements 

Input Data from Knowledge 

Base 

Yes. 3D models of robots, Robots parameters, 3D model of 

working environment, 3D models of workstations, 3D models of 

worked components 

Input Data from 

Sensors/Context 

Our solution emulates the behaviours of sensors 

Format of Expected Input JSON/XML 

Triggered by End user/Event-driven from input components (Simulation 

testing based tool) 

Interfaces Data stream (Shared memory), Batch files 

Output requirements 

Main Outputs Human performance metrics (task duration, saturation rate), 

KPIs of the system (avg productivity, resources utilization rate), 

safety zones violation 



SOPRANO Open Call – Technical Description  

Page 22  13 March 2025 

Output Data to Knowledge 

Base 

Simulation results in XML format 

Nature of Expected Output JSON files 

Hardware & software requirements 

Software Requirements Digital Twin Service platform, Windows or Linux operating 

system 

Hardware Requirements No specific 

Communications GRPC, TCP/IP 

Special Communication 

Requirement 

Direct low-latency connection between Digital Twin Service 

platform and SBT tool 

Integration Requirements No specific 

Deployment Requirements No specific 

 2.9.4. Suggested bundling of this component with other SOPRANO components  

It is strongly suggested to bundle the HDT component with the SBT tool when the main 

scope is to investigate safety issues in MH-MR systems to prevent unexpected collisions and 

mitigate the risk of workers injuries. 

 

2.10. AI Trustworthiness (AIT) 

2.10.1. Technical summary 

The AI Trustworthiness component underpins the safety assurance of AI-based components 

powering the robots, when deployed in interaction with humans. This involves assessing the 

quality attributes of DL models, offering a balance between correctness and reliability. The 

framework has a design time and a runtime AI assurance module. 

The design time module carries out quality assurance of DL components used in the robotic 

team or within the MH-MR interaction tasks, driven by a systematic testing methodology, 

leveraging an AI explainability-driven test criterion for detecting behaviour inconsistencies 

in the DL models. In particular, given a trained DL model (e.g., for object classification) 

along with the training and testing sets, the design time module conducts white-box analysis 

and testing to assess the fault-revealing ability of the test set and its defect-detection 

capabilities. The results are exploited for the generation of semantically meaningful 

synthetic datasets with the twofold objective of increasing the test coverage and exposing 

the DL model to a diverse set of inputs that could yield unexpected decisions. Identifying 

these issues and fixing them before the system is deployed is paramount. At this stage, 

technologies developed in the AI Model Optimizer SOPRANO component will be used to 

efficiently process, transfer, and integrate the augmented data between the different 

components of this module. 

The runtime module carries out the reliability evaluation by conducting uncertainty 

estimation enabling the identification of situations where the DL model may be particularly 

uncertain. The final pillar of this module is a continuous monitoring and repairing 

methodology that relies on the data augmentation process. This data augmentation process 

will entail creating synthetically meaningful inputs derived from the test/training data. 

Additionally, this data will be deployed for model finetuning and incremental retraining to 



 SOPRANO Open Call – Technical Description 

13 March 2025  Page 23 

 

address issues related to data diversity and domain adaptation by introducing corner-case 

scenarios replicated using the data augmentation process. 

The planned release of AIT is partitioned into two key stages to reflect the progressive 

development of its constituent modules: Explainability-driven testing for DL models: This 

module introduces a white-box testing approach that leverages explainability concepts to 

identify important neurons contributing to decision-making and target their adequate testing. 

This module will be released by mid-2025. 

Uncertainty estimation of DL models: This module assesses the confidence of predictions 

made by DL models. By quantifying uncertainty, it ensures that models provide reliable and 

interpretable outputs, especially in critical industrial applications. This module will be 

released by mid-2025. 

Improved DL models testing through data augmentation: A data augmentation module is 

utilized to enhance the generalization and robustness of AI models. This module generates 

synthetic data using generative AI (GenAI) to increase prediction accuracy and expand the 

prediction space, helping models better handle diverse scenarios. This module will be 

released by Q4 2025. 

2.10.2. Planned date of release of a prototype 

The planned release of AIT is partitioned into two key stages to reflect the progressive 

development of its constituent modules: 

▪ By mid-2025 - an AIT prototype comprising the explainability-driven testing module 

and the runtime uncertainty estimation module. 

▪ By end-2025 - an enhanced AIT component augmented with the data augmentation 

module. 

2.10.3. Requirements for the component  

The AIT framework is implemented as a stand-alone package, based on widely used ML 

frameworks, i.e., TensorFlow, Pytorch, Keras. The machine used for deployment needs to 

have Python3, pip, Anaconda and Docker installed, as well as network connectivity. 

More information about the software and hardware requirements can be found in Table 11 

below. 

Table 11: Requirements for the AI Trustworthiness Component 

Component Name AI Trustworthiness (SC11) 

Type 

(Software/Hardware/Both) 

Software 

Short Description AI trustworthiness component performs AI explainability-driven 

test criterion to detect behaviour inconsistencies in the ML/DL at 

design time and advanced testing techniques are exploited at 

runtime 

Employed at: Run Time / 

Design Time / Both 

Both 

Input requirements 

Input Data from Knowledge 

Base 

Training and testing datasets for each Deep Neural Network used 



SOPRANO Open Call – Technical Description  

Page 24  13 March 2025 

Input Data from 

Sensors/Context 

Image data, LiDAR/GPS data 

Format of Expected Input data (e.g. RGB images, pointcloud) with ground truth 

annotations (e.g. CSV, JSON), model and hyperparameters (e.g. 

pd, hdf5) 

Triggered by Design time: every model, run time: every raw prediction 

Interfaces Shared message bus (broker application) 

Output requirements 

Main Outputs Synthetically augmented datasets, repaired WP2 models, 

uncertainty estimation 

Output Data to Knowledge 

Base 

DT: Synthetically augmented datasets, updated DNN; RT: 

uncertainty estimation 

Nature of Expected Output Datasets, re-trained models for perception (model architecture 

and weights), percentage values indicating the uncertainty for 

each prediction 

Hardware & software requirements 

Software Requirements Python3, TensorFlow, Pytorch, Keras, Pip, Docker, Anaconda 

Hardware Requirements GPU-accelerated machine with RAM>=16GB, screen, network 

(wired/wifi) 

Communications Broker application/Shared message bus 

Special Communication 

Requirement 

No specific 

Integration Requirements Python3, Pip, Docker, network connectivity 

Deployment Requirements Python3, Pip, Docker, network connectivity 

2.10.4. Suggested bundling of this component with other SOPRANO components  

The AIT component is designed to operate whilst using as an input a deep neural network 

model, though at the same time it works independently, offering testing APIs for DL models 

to ensure its confidence for human use. Both runtime and design time parts of AIT do not 

require other SOPRANO components' interaction and should be model-agnostic. 

However, integrating AIT with other components could be helpful for enhancing the use 

cases' capabilities. For example, given the 6D (or 3D human) pose data, AIT could enhance 

object detection reliability by integrating uncertainty estimation and explainability-driven 

testing to ensure safety in both the OBP and HMO components.  

 

2.11. Context Extraction Module (CEM) 

2.11.1. Technical summary 

The Context Awareness solution extracts context under which the work is carried out, 

interprets the current context and provides context information as a basis to adapt the robot 

actions/recommendations to the context. This solution consists of three main components: 

Context Models, Context Monitoring and Context Extraction. Within the SOPRANO project 

the Context models will be used as a baseline to gather and represent knowledge about 

collaborative human-robot work in various settings. The Context models will be a set of 



 SOPRANO Open Call – Technical Description 

13 March 2025  Page 25 

 

concepts and their relations which describe the stages, entities, attributes and stakeholders 

within collaborative human-robot work. 

The Context Monitoring and Extraction components allow for identifying changes in the 

Contexts of the environment. The identified Context is used to support the decision-making 

/ optimization / reconfiguration. The Context Monitoring and Extraction method uses 

monitored “raw data” provided from systems/sensors, as well as knowledge available in 

different (SOPRANO) modules to derive the current context. Using the Context model, the 

monitored data is evaluated, and the context extracted. Based on the identified context, it 

can be compared to previous ones and stored. A continuous process, coordinating with the 

monitoring and followed by the extraction process to give current context meaning to the 

provided knowledge, is built around the main extraction of a Context in SOPRANO. The 

method covers the definition of the mechanisms to monitor context and process changes – in 

relation to the quantitative relationships influencing the meaning of contexts from various 

perspectives (user, modules, services). This includes a definition of the entities relevant for 

monitoring contexts and parameter changes, and investigation of the extent to which these 

mechanisms depend on the viewpoint, for which changes are being monitored, according to 

the defined Context models. 

The Context Extraction Module is based on the Eclipse OpenSmartClide Context Handler, 

developed within the H2020 SmartCLIDE project and consists of two independent 

components, the Context Monitoring and the Context Extraction. Both components are 

developed in Java and can be seen as backend-services. The Context Extraction Module will 

be provided in two versions, one for smaller installation, where both components will be 

deployed in one docker container and a version for large installation, where two docker 

containers will be provided (one for the Context Monitoring and a second one for Context 

Extraction). 

2.11.2. Planned date of release of a prototype 

The core functionality of the Context Extraction Module is already available via the Eclipse 

OpenSmartCLIDE project (https://github.com/eclipse-opensmartclide/smartclide-context).  

By mid-2025 - the SOPRANO specific additions, such as the capability to communicate 

with the SOPRANO MessageBroker are planned to be published, and the SOPRANO 

Context Model is planned to be realized. 

2.11.3. Requirements for the component  

Detailed hardware and software requirements for CEM can be found in Table 12 below. 

Table 12: Requirements for the Context Extraction Module Component 

Component Name Context Extraction Module (SC12) 

Type 

(Software/Hardware/Both) 

Software 

Short Description The component incorporates the ontology approach for model 

contexts while the context extraction service evaluates, manages 

& converts the raw sensory data to aggregated data 

Employed at: Run Time / 

Design Time / Both 

Both 

Input requirements 

https://github.com/eclipse-opensmartclide/smartclide-context


SOPRANO Open Call – Technical Description  

Page 26  13 March 2025 

Input Data from Knowledge 

Base 

Yes (previously stored context information to be able to reason 

current context) 

Input Data from 

Sensors/Context 

No 

Format of Expected Input .json 

Triggered by Triggered either by another component or periodically by 

Context Extraction itself 

Interfaces Interface to the Middleware (e.g. Kafka) and to the robots 

Output requirements 

Main Outputs Extracted Context 

Output Data to Knowledge 

Base 

Extracted context 

Nature of Expected Output Extracted context in RDF format 

Hardware & software requirements 

Development Environment Docker container 

Software Requirements Context Extraction Module will be provided as docker container 

image 

Hardware Requirements no special hardware requirement foreseen 

Communications Via Middleware using publish subscribe mechanisms 

Special Communication 

Requirement 

No specific 

Integration Requirements Docker, Middleware 

Deployment Requirements Docker, Middleware 

2.11.4. Suggested bundling of this component with other SOPRANO components  

If any of the components SC1, SC2, SC3, SC4 are used then they could be used as inputs to 

the CEM component, but they are not compulsory, other monitors that observe the situations 

of the robots can be developed to input the wanted situational data. 

 

2.12. MH-MR Architecting Tools (MAT) 

2.12.1. Technical summary 

The MH-MR Architecting Tools model the environment in which the robot operates by 

using the FloorPlan and Variation Domain Specific Languages (DSLs). The goal of these 

DSLs is to provide a user-friendly, text-based, declarative language to specify 

environmental models. As its name suggests, the Variation DSL enables the generation of 

variations of a FloorPlan model by sampling measurements and variables that describe the 

FloorPlan geometry (e.g., the length of a hallway or the height of a door).  These models are 

transformed into a composable model representation, which is used by the scenery builder 

tools for the generation of executable artefacts, both for simulation and real-world 

execution.  

Optionally, the MAT tools can use an Industry Foundation Class (IFC) representation of a 

Building Information Modelling (BIM) model as an input, which is transformed into 

Composable FloorPlan models and conforms to the FloorPlan meta-models. These models 



 SOPRANO Open Call – Technical Description 

13 March 2025  Page 27 

 

are composed into a graph which can be queried using SPARQL or RFD libraries. The 

scenery builder then generates artefacts for simulation in Gazebo (3D meshes, Gazebo 

models and worlds), occupancy grids and ROS launch files. It can also use features in the 

environment (or those extracted and transformed from the BIM model) to generate task 

specifications according to some predefined schema.  

2.12.2. Planned date of release of a prototype 

Mid-2025 

2.12.3. Requirements for the component  

Detailed hardware and software requirements are presented in Table 13 below.  

Table 13: Requirements for the MH-MR Architecting Tools Component 

Component Name MH-MR Architecting Tools (SC13) 

Type 

(Software/Hardware/Both) 

Software 

Short Description A meta-modelling approach is employed to compose dynamic 

environmental features (floorplan, occupancy grids, task 

specifications etc.)  

Employed at: Run Time / 

Design Time / Both 

Design Time 

Input requirements 

Input Data from Knowledge 

Base 

Yes 

Input Data from 

Sensors/Context 

No 

Format of Expected Input .ifc 

Triggered by - 

Interfaces Gazebo plugins 

Output requirements 

Main Outputs Floorplan DSL models, composable models, generated execution 

artifacts 

Output Data to Knowledge 

Base 

FloorPlan models, Occupancy grid maps, Gazebo world and 

models, STL meshes 

Nature of Expected Output .floorplan, .variation, .jsonld, .stl, .sdf, .world, .yaml, .pgm, 

.launch, .poly 

Hardware & software requirements 

Development Environment Python, ROS 

Software Requirements Blender, ROS, Gazebo 

Hardware Requirements No specific 

Communications No specific 

Special Communication 

Requirement 

No specific 

Integration Requirements Docker 

Deployment Requirements Docker, Gazebo, ROS2 



SOPRANO Open Call – Technical Description  

Page 28  13 March 2025 

2.12.4. Suggested bundling of this component with other SOPRANO components  

The component can be integrated with the Scalable Simulation-Based Testing (SBT) 

component.  

 

2.13. MLOps Orchestrator (MLO) 

2.13.1. Technical summary 

The MLOps Orchestrator provides automation and monitoring at all steps of ML system 

development and deployment, including integration, testing, releasing, deployment and 

infrastructure management and is needed in cases of frequent retraining and redeployment of 

machine learning models/features. MLO in collaboration with AI Model Optimizer provides 

the packaging and automatic deployment of the ML pipeline in the cases that the 

computational resources that are available cannot meet the expected requirements. The 

combined solution of the two components automates the model training process and 

identifies suitable strategies for meeting the pipeline requirements and adapt the pipeline 

accordingly. 

The MLO will consist of five modules, the Airflow Engine, the Worker Management that 

handles the infrastructure resources, the Resource Registry that contains all the relevant 

resources, the Workflow Editor and the Artifact Repository which serves as an integration 

point with AIO and contains the ML models and docker containers. The workflow editor 

module defines in a graphical way the components involved and the sequence of execution 

of an AI pipeline. The Editor can manage the data sources (inputs/outputs), analytics 

processors and infrastructure resources (workers). The editor exports a building and 

deployment plan that is first consumed by AIO which may extend it and then is used by 

MLO Airflow module which provides the workflow orchestration through automation, 

monitoring and maintenance of the ML pipelines. 

2.13.2. Planned date of release of a prototype 

Mid-2025 - early prototype, depending on available SOPRANO components/algorithms that 

will utilize MLO. 

2.13.3. Requirements for the component  

MLO requires as initial inputs the available infrastructure resources, the digital resources 

meaning the communication interface for data types to be transferred and the available 

processors being the analytics algorithms through docker containers. With these inputs 

predefined in MLO, the user can then specify the AI components to be included in the 

pipeline, the input parameters and settings for each AI component and the data sources (ex. 

KAFKA or any message bus). Through a user-friendly pipeline editor, the user connects the 

AI components and defines their configuration parameters. Then, the MLO outputs a fully 

configured AI pipeline based on the user inputs, including the selection of AI components, 

parameter settings, and data sources. The component provides visual representations of the 

constructed pipeline and manages data flow within the pipeline, ensuring efficient transfer 

and processing of data between different AI components. 

Table 14: Requirements for the MLOps Orchestrator Component 

Component Name MLOps Orchestrator (SC14) 



 SOPRANO Open Call – Technical Description 

13 March 2025  Page 29 

 

Type 

(Software/Hardware/Both) 

Software 

Short Description This infrastructure will facilitate the seamless coordination and 

orchestration of the SOPRANO AI components across a network 

of devices with varying capabilities, ensuring efficient resource 

utilization, low-latency data processing, and robust fault 

tolerance 

Employed at: Run Time / 

Design Time / Both 

Design Time 

Input requirements 

Input Data from Knowledge 

Base 

Image streams, sensor data 

Input Data from 

Sensors/Context 

Deployment Plan 

Format of Expected Input YAML/JSON/etc. 

Triggered by Developer (CI/CD operation) 

Interfaces Interfaces for integration with AI Model Optimizer 

Output requirements 

Main Outputs Pipeline configuration, data flow management, visualization of 

the pipeline, integration with external systems, orchestration 

service 

Output Data to Knowledge 

Base 

N/A 

Nature of Expected Output AI/ML Pipelines 

Hardware & software requirements 

Development Environment on-premise/cloud/edge 

Software Requirements Depends on Worker Purpose. Specific Software requirements 

can be configured when building worker docker images 

(requirements.txt). 

Hardware Requirements WME - Workflow Management Engine (front & back): 4 GB 

RAM, Airflow Core - (Web Server, Redis, Postgres, Scheduler): 

4 GB RAM, For deployment only: 2GB RAM 

Communications REST API, SSH/SCP, Web Sockets (possibly in the future) 

Special Communication 

Requirement 

No specific 

Integration Requirements git, docker 

Deployment Requirements Using Ansible: Internet + ansible in jumphost + ssh key 

(jumphost -> core/worker). Without Ansible: Internet, docker, 

git, ssh keys 

 

2.14. AI Model Optimizer (AIO) 

2.14.1. Technical summary 

The AI Model Optimizer is a software system that transforms deep neural networks (DNN) 

in a way to optimize their inference performance given the application requirements and the 

available compute and network infrastructure. 

There are two distinct core functionalities within the system: 



SOPRANO Open Call – Technical Description  

Page 30  13 March 2025 

▪ It estimates the performance of a DNN model in inference mode under various 

settings (standalone, distributed) on a given compute and network resource 

infrastructure 

▪ It performs transformations on a DNN model (without retraining it) and generates a 

deployment plan. Those transformations include the creation of an equivalent 

distributed configuration, the pruning of the network weights/filters/layers and the 

quantization of the network weights. The functionality includes the generation of one 

or more new docker images for the execution of the model. 

The two functionalities are combined so as for the AIO to generate optimal (for a given 

DNN, requirements and resources) transformations and deployment plans. Those 

deployment plans are consumed by the MLOps Orchestrator while the user interaction with 

the AIO for the submission of the DNN model characteristics and the application 

requirements are provided by a minimal user interface. The availability of the resources is 

provided by an agent installed in each of the computing nodes. The AIO starts with the 

processing of the DNN structure that is provided as a .pt or .pht file (Pytorch). The output of 

the AIO is a deployment plan either for an Apache Airflow or for a Kubeflow installation or 

the StreamK3S subsystem. 

2.14.2. Planned date of release of a prototype 

Mid-2025 - the initial release of the AI Model Optimizer (AIO) is expected. Since a 

significant portion of its functionality depends on seamless integration with the MLOps 

Orchestrator and other SOPRANO components, the timeline for a more refined version is 

yet to be determined. 

2.14.3. Requirements for the component  

Detailed hardware and software requirements are presented in Table 15 below.  

Table 15: Requirements for the AI Model Optimizer Component 

Component Name AI Model Optimizer (SC15) 

Type 

(Software/Hardware/Both) 

Software 

Short Description The main functionality of the optimizer is to convert a 

computationally intensive AI model/component into an 

optimized model in terms of latency and inference time, that will 

be able to operate with reduced resources if needed. 

Employed at: Run Time / 

Design Time / Both 

Design Time 

Input requirements 

Input Data from Knowledge 

Base 

Yes 

Input Data from 

Sensors/Context 

Yes (monitoring agents for tracking the availability of the 

computational resources) 

Format of Expected Input YAML/JSON/etc. 

Triggered by MLOps Orchestrator 

Interfaces 1) to data bus, 2) interfaces for input data, 3) interfaces for 

integration with MLOps Orchestrator 

Output requirements 

Main Outputs Optimized AI models for resource-constrained devices 



 SOPRANO Open Call – Technical Description 

13 March 2025  Page 31 

 

Output Data to Knowledge 

Base 

Deployment plan, new software components [optionally] 

Nature of Expected Output yaml/json/etc, docker images [optionally] 

Hardware & software requirements 

Software Requirements Python, Docker engine 

Hardware Requirements Commodity computer/VM 

Communications TCP/IP 

Special Communication 

Requirement 

Lan-Connection to UR10 

Integration Requirements Partner-Actions implemented as Ros2-Action 

Deployment Requirements Partner-Actions implemented as Ros2-Action 

2.14.4. Suggested bundling of this component with other SOPRANO components  

The AIO can fit its output to the MLO so that the submodels generated by the MLO can be 

deployed in the available resources. It also bundles with the OBP, since for its first version, 

the AIO, optimizes the inference of the OBP DNN. 

 

2.15. Robotic Capabilities Implementation (RCI) 

2.15.1. Technical summary 

The task mapping component within the SOPRANO system is designed to deliver essential 

functionalities that enable the decomposition of high-level assembly plans into executable 

robotic actions, specifically tailored for the robotic platforms in SOPRANO - FELICE 

Robot and UR10. This component (Robot Capabilities Implementation) ensures efficient 

execution of low-level robotic skills such as object handling, manipulation, screwing tasks, 

and collaborative tasks with human operators. Implementing non-continuous robotic actions 

like grasping, holding, and screwing requires precise prediction of parameters such as grasp 

points, object properties, and environmental conditions. The proposed behaviour tree-based 

framework leverages the modularity and hierarchical structure of behaviour trees to 

represent and execute robotic tasks efficiently. 

For specific tasks like object handling and manipulation, the system identifies, and grasps 

objects using optimized grasp points and poses, adapting to varying object geometries and 

properties. Screwing tasks involve accurate alignment of screw threads, dynamic torque 

control based on material hardness, and consistent thread engagement using real-time 

feedback to prevent stripping or cross-threading. Collaborative tasks synchronize robotic 

actions with human interventions, ensuring timely and coordinated execution in 

collaborative assembly environments. High-level control could involve integrating low-level 

control functionalities with the ROS framework to enable smooth trajectory execution and 

self-collision awareness. Integration with open-source implementations such as MoveIt and 

ros_control allows for seamless coordination between planning and execution, with dynamic 

scene adaptation based on object localization and sensor data. The implementation is 

envisioned to include grasp planning and execution, involving the configuration and 

optimization of grasp points and poses based on CAD models, followed by extensive testing 

and parameter optimization. The system dynamically adapts task execution strategies based 

on real-time feedback and environmental conditions, leveraging perception modules for 

accurate object detection and recognition. This comprehensive approach ensures efficient, 



SOPRANO Open Call – Technical Description  

Page 32  13 March 2025 

adaptable, and reliable execution of low-level robotic skills, enhancing productivity in 

industrial assembly processes. 

2.15.2. Planned date of release of a prototype 

▪ By mid-2025 - some of the capabilities (Object handling, Object manipulation)  

▪ By end-2025 - most capabilities (collaborative handover, unscrewing). 

2.15.3. Requirements for the component  

Detailed hardware and software requirements are presented in Table 16 below.  

Table 16: Requirements for the Robotic Capabilities Implementation Component 

Component Name Robotic Capabilities Implementation (SC16) 

Type 

(Software/Hardware/Both) 

Software 

Short Description A comprehensive framework capable of executing diverse 

robotic actions will be developed. The component will also 

support the integration of the low-level control functionalities 

with the ROS framework (for FELICE Robot and UR10) 

Employed at: Run Time / 

Design Time / Both 

Runtime 

Input requirements 

Input Data from Knowledge 

Base 

Yes 

Input Data from 

Sensors/Context 

Yes 

Format of Expected Input Ros message (ROS2 actions),  

Triggered by ID5 

Interfaces ROS2 

Output requirements 

Main Outputs High-level robot control, Manipulation planning, Grasp planning 

and execution 

Output Data to Knowledge 

Base 

No 

Nature of Expected Output Ros2 actions (Robot Trajectories, process triggers) 

Hardware & software requirements 

Software Requirements Python, Docker 

Hardware Requirements depends on the use case 

Communications Ros2, Rest 

Special Communication 

Requirement 

Direct Ethernet-Connection (e.g. via switches) to the Robot 

Integration Requirements Partner-Actions implemented as Ros2-Action 

Deployment Requirements Partner-Actions implemented as Ros2-Action 

2.15.4. Suggested bundling of this component with other SOPRANO components  

The component can be integrated with the MRC, OBP and CTA components. 

 



 SOPRANO Open Call – Technical Description 

13 March 2025  Page 33 

 

2.16. Advanced Visualizations (AVT) 

2.16.1. Technical summary 

The Advanced Visualization Toolkit is the component that bridges the gap and offers to the 

SOPRANO end-user all the necessary features, services and indications under a unified user 

interface. Its real-time and historical data analytics capabilities will be utilized to provide 

dedicated informative and user-friendly custom dashboards, assisted by AI modules. During 

the Design Time execution of the SOPRANO system, AVT will provide operational 

historical data, stored in the Knowledge Base, to the end-user utilizing visualization widgets 

that best fit each scenario accompanied by relevant notifications and indicators. 

Additionally, the operator will be able to log-in to the AVT using an Identity and Access 

Management (IAM) solution. The user management process will be handled by Keycloak 

which will be integrated with the AVT to not only serve the application through a secure 

channel but also allow the creation of different custom dashboards relevant to the operator’s 

rights. 

During Runtime, upon initialization, all the spatial information (floorplans, BIMs etc.) will 

be retrieved and displayed from the Knowledge Base as an after product of the BIM-files 

procedure. The available options will be retrieved by MH-MR Task Allocation and 

presented to the operator, and the selection will be reported back to allow further 

configuration. During the execution of the scenarios, interactions with the Safety tools and 

Human Digital Twin will be established to display possible safety warnings and 

performance metrics with particular attention to the representation of time-sensitive 

information and indicators. Finally, in specific scenarios, the operator will be able to interact 

with the options offered by the Robotic Capabilities Implementation required to proceed 

with the execution. Any additional functionalities that might arise during the initial 

integration of the components will be integrated in the AVT, in an effort to provide a single 

and central point of entry and control to the operator. 

2.16.2. Planned date of release of a prototype 

Mid-2025 - initial release of the Advanced Visualizations is expected. Since a significant 

portion of its functionality depends on seamless communication with other SOPRANO 

components, the timeline for a more refined version is yet to be determined. 

2.16.3. Requirements for the component  

In terms of data storage capabilities, AVT can operate with its own storage facility (mainly 

Elasticsearch search engine) and/or also use multiple other sources of data, be it data 

streams (e.g. Kafka) or batch data (e.g. via RESTful APIs, external ES, MongoDB, etc.). 

This flexibility is possible due to a number of tailor-made converters, which can request the 

data from the respective data sources and transform it to a suitable format for AVT’s 

visualization widgets. APIs/other methods (e.g., direct access to data) are required to get the 

indicator values and the task related information. Streaming data is also supported (e.g. via 

Kafka). An Angular-based web application offers the frontend of the Advanced 

Visualization Toolkit. A Node.js application serves as the middleware that handles data 

inputs and the business logic of the toolkit. AVT can be installed as a standalone 

application, but a dockerized version of the toolkit is also available. End-users only need a 

browser to access AVT. 

Table 17: Requirements for the Advanced Visualizations Component 

Component Name Advanced Visualizations (SC17) 



SOPRANO Open Call – Technical Description  

Page 34  13 March 2025 

Type 

(Software/Hardware/Both) 

Software 

Short Description A set of data collection, processing, and presentation 

components and tools, which can assist users in examining and 

analysing digital information collected from the monitored 

sources. Interactive commands and authentication processes will 

be also developed 

Employed at: Run Time / 

Design Time / Both 

Both 

Input requirements 

Input Data from Knowledge 

Base 

Yes 

Input Data from 

Sensors/Context 

No 

Format of Expected Input JSON/XML 

Triggered by End-user / Auto (from other components) 

Interfaces 1) Data streams (e.g. Kafka) 2) Batch data (e.g. via RESTful 

APIs, external ElasticSearch, MongoDB, flat files etc.) 

Output requirements 

Main Outputs Metrics / Safety Warning / Task Progress, Configuration Options 

Output Data to Knowledge 

Base 

Yes 

Nature of Expected Output Visualizations (graph based etc.), Json files 

Hardware & software requirements 

Development Environment cloud and on-premise 

Software Requirements Express.js, Elasticsearch, Kafka, MongoDB, Node.js, etc 

depending on the implementation Also available as a standalone 

Docker image 

Hardware Requirements • CPUs >= 2 • RAM >= 4GB (depending on the data volume and 

utilized visualizations) • Disk space >= 20GB 

Communications 1) rest-API endpoints and 2) web sockets 

Special Communication 

Requirement 

No specific 

Integration Requirements Docker 

 

2.16.4. Suggested bundling of this component with other SOPRANO components  

Bundling Advanced Visualizations with other SOPRANO components is not justified in the 

current analysis. 

 

3. HOW TO START DEVELOPING WITH A SOPRANO COMPONENT? 

The SOPRANO consortium has already started the integration of the components into three 

industrial use cases. The third-party partners should follow the development process already 

implemented in these use cases. The following approach is warranted: 

▪ Describe the use case according to SOPRANO specifications and concepts. 



 SOPRANO Open Call – Technical Description 

13 March 2025  Page 35 

 

▪ Choose the SOPRANO components that you would like to use and integrate into the 

industrial setting of your use case. 

▪ Start the development with the help of SOPRANO mentors and the application 

templates and samples that will be provided. To help the 3rd-party partners, the 

consortium will provide, as needed, additional technical information, documentation 

and samples. 

▪ In addition, the three SOPRANO use-case partners will present what can be achieved 

with the SOPRANO technologies. 

 


